The development of multi-modal medical foundation models has attracted significant attention in the field of medicine and healthcare due to their promising prospects in various clinical applications. One area of focus in this research direction is the extractions of features at different scales. While previous studies have explored feature learning at individual scales, investigation on integrating the diverse scales and modalities of information is lacking, which may hinder the potential for mutual reinforcement among these features. This paper aims to bridge this gap by proposing a method that effectively exploits multi-scale and cross-modality information to enhance the performance of medical foundation models. The proposed method simultaneously exploit features at the local, instance, modality and global aspects, facilitating comprehensive representation learning within the models. We evaluate the effectiveness of the proposed method on six open-source datasets across different clinical tasks, demonstrating its ability to enhance the performance of medical foundation models.
翻译:暂无翻译