Gaussian Processes (GPs) have proven themselves as a reliable and effective method in probabilistic Machine Learning. Thanks to recent and current advances, modeling complex data with GPs is becoming more and more feasible. Thus, these types of models are, nowadays, an interesting alternative to Neural and Deep Learning methods, which are arguably the current state-of-the-art in Machine Learning. For the latter, we see an increasing interest in so-called explainable approaches - in essence methods that aim to make a Machine Learning model's decision process transparent to humans. Such methods are particularly needed when illogical or biased reasoning can lead to actual disadvantageous consequences for humans. Ideally, explainable Machine Learning should help detect such flaws in a model and aid a subsequent debugging process. One active line of research in Machine Learning explainability are gradient-based methods, which have been successfully applied to complex neural networks. Given that GPs are closed under differentiation, gradient-based explainability for GPs appears as a promising field of research. This paper is primarily focused on explaining GP classifiers via gradients where, contrary to GP regression, derivative GPs are not straightforward to obtain.


翻译:高斯进程(GPs)已证明自己是概率机器学习的一种可靠而有效的方法。由于最近和目前的进步,以GPs模拟复杂数据的做法越来越可行。因此,这些类型的模型如今是神经和深层学习方法的一种有趣的替代方法,可以说这是机器学习中目前最先进的方法。对于后者来说,我们看到对所谓的可解释方法越来越感兴趣,这些方法本质上旨在使机器学习模型的决策过程对人类透明。当不合逻辑或偏颇的推理可能导致对人类的实际不利后果时,特别需要这种方法。理想的是,可解释的机器学习应该有助于在模型中发现这种缺陷,帮助随后的解错过程。机械学习的一个积极研究线是基于梯度的方法,这些方法已经成功地应用于复杂的神经网络。鉴于GPs在差异下是封闭的,因此GPs的梯度解释似乎是一个很有希望的研究领域。本文主要侧重于通过梯度解释GP分类器的分类方法,而与GPGP不是直接获得的。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月9日
Arxiv
12+阅读 · 2022年4月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员