It often happens that the same problem presents itself to different communities and the solutions proposed or adopted by those communities are different. We take the case of the variance estimation of the population average treatment effect in cluster-randomized experiments. The econometrics literature promotes the cluster-robust variance estimator (Athey and Imbens, 2017), which can be dated back to the study of linear regression with clustered residuals (Liang and Zeger, 1986). The A/B testing or online experimentation literature promotes the delta method (Kohavi et al., 2010, Deng et al., 2017, 2018), which tackles the variance estimation of the ATE estimator directly using large sample theory. The two methods are seemly different as the former begins with a regression setting at the individual unit level and the latter is semi-parametric with only i.i.d. assumptions on the clusters. Both methods are widely used in practice. It begs the question for their connection and comparison. In this paper we prove they are equivalent and in the canonical implementation they should give exactly the same result.


翻译:通常情况下,同样的问题会出现在不同的社区,而这些社区提出或采纳的解决方案是不同的。我们以群集随机实验中对人口平均治疗效果的不同估计为例。计量经济学文献提倡群集-粗体差异估计值(ASY和Imbens, 2017年),这可以追溯到群集残留物的线性回归研究(Liang和Zeger,1986年)。A/B测试或在线实验文献提倡三角体方法(Kohavi等人,2010年;Deng等人,2017年,2018年),直接使用大样本理论处理ATE估计值的差异估计值。两种方法似乎截然不同,因为前者从单个单位级的回归度开始,后者仅以i.d.假设作为半参数。这两种方法在实践中都广泛使用。两种方法都提出了联系和比较问题。在本文中,我们证明它们是对等的,在直截面执行过程中,它们应该产生完全相同的结果。

0
下载
关闭预览

相关内容

【硬核书】图论、组合优化和算法手册,1217页pdf
专知会员服务
158+阅读 · 2021年6月29日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
41+阅读 · 2021年4月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员