Collaborative filtering is the de facto standard for analyzing users' activities and building recommendation systems for items. In this work we develop Sliced Anti-symmetric Decomposition (SAD), a new model for collaborative filtering based on implicit feedback. In contrast to traditional techniques where a latent representation of users (user vectors) and items (item vectors) are estimated, SAD introduces one additional latent vector to each item, using a novel three-way tensor view of user-item interactions. This new vector extends user-item preferences calculated by standard dot products to general inner products, producing interactions between items when evaluating their relative preferences. SAD reduces to state-of-the-art (SOTA) collaborative filtering models when the vector collapses to one, while in this paper we allow its value to be estimated from data. The proposed SAD model is simple, resulting in an efficient group stochastic gradient descent (SGD) algorithm. We demonstrate the efficiency of SAD in both simulated and real world datasets containing over 1M user-item interactions. By comparing SAD with seven alternative SOTA collaborative filtering models, we show that SAD is able to more consistently estimate personalized preferences.
翻译:合作过滤是分析用户活动和建立项目建议系统的实际标准。在这项工作中,我们开发了基于隐含反馈的合作过滤新模式(SAD),即基于隐性反馈的合作过滤新模式。与用户(用户矢量)和项目(项目矢量)的潜在代表性估计的传统技术相比,SAD为每个项目增加了一种潜在的矢量,使用一种全新的三向分方视角来分析用户-项目互动。这一新矢量将标准点产品计算出的用户-项目偏好扩展至普通内产产品,在评价其相对偏好时产生项目之间的相互作用。SAD在矢量崩溃到一个时降低为最先进的(SOTA)合作过滤模型,而在本文中,我们允许从数据中估算其价值。拟议的SAD模型很简单,导致高效的群分层梯度下降算法。我们在包含超过1M用户项交互作用的模拟和真实世界数据集中展示SAD的效率。通过将SAD与7个替代的SATA合作过滤模型进行比较,我们显示SAD能够更持续地估计个人偏好。