A wider coverage and a better solution to latency reduction in 5G necessitates its combination with mobile edge computing (MEC) technology. Decentralized deep learning (DDL) as a promising solution to privacy-preserving data processing for millions of edge smart devices, it leverages federated learning within the networking of local models, without disclosing a client's raw data. Especially, in industries such as finance and healthcare where sensitive data of transactions and personal medical records is cautiously maintained, DDL facilitates the collaboration among these institutes to improve the performance of local models, while protecting data privacy of participating clients. In this survey paper, we demonstrate technical fundamentals of DDL for benefiting many walks of society through decentralized learning. Furthermore, we offer a comprehensive overview of recent challenges of DDL and the most relevant solutions from novel perspectives of communication efficiency and trustworthiness.


翻译:分散的深层次学习(DDL)是保护数百万精锐智能设备的隐私数据处理的一个有希望的解决办法,它在当地模型网络内利用联合会的学习,而不披露客户的原始数据。特别是在金融和保健等行业,交易和个人医疗记录敏感数据得到谨慎维护,DDL促进这些机构之间的合作,以改善当地模型的性能,同时保护参与客户的数据隐私。在本调查文件中,我们展示DDL的技术基础,通过分散学习使许多社会阶层受益。此外,我们还从通信效率和信任的新角度全面概述了DDL的近期挑战以及最相关的解决办法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
11+阅读 · 2021年3月25日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员