Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health.
翻译:人工智能(AI)是简化COVID-19诊断的一个很有希望的替代物,然而,对安全和可信度的关切妨碍了大规模代表性医疗数据的收集,对培训临床实践方面的广泛模式提出了相当大的挑战,为此,我们启动了统一CT-COVID AI诊断倡议(UCADI),该模型可以在不共享数据的情况下,根据一个联合学习框架(FL)在每一个东道机构进行分布、培训和独立执行,而无需共享数据。这里我们显示,我们的FL模型通过大量产出(在中国的测试灵敏度/特性:0.973/0.951,在英国:0.730/0.942)超越了所有当地模型(测试灵敏度/特性:在英国:0.773/0.951,在专业放射学家小组取得可比业绩。我们进一步评价了“暂停”模型(从另外两家医院收集了FL)和“混杂”数据(用对比材料获得),为模型做出的决定提供了直观解释,并分析了模型在联合培训过程中的保密性表现与通信成本之间的权衡。我们的研究基于9,573/0.953,从英国的先进医院,从英国的档案中,从23版的档案到BIA-C-C-C-C-IAL-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-II-I-I-I-I-I-II-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-II-