In this paper, we investigate the problem of multi-domain translation: given an element $a$ of domain $A$, we would like to generate a corresponding $b$ sample in another domain $B$, and vice versa. Acquiring supervision in multiple domains can be a tedious task, also we propose to learn this translation from one domain to another when supervision is available as a pair $(a,b)\sim A\times B$ and leveraging possible unpaired data when only $a\sim A$ or only $b\sim B$ is available. We introduce a new unified framework called Latent Space Mapping (\model) that exploits the manifold assumption in order to learn, from each domain, a latent space. Unlike existing approaches, we propose to further regularize each latent space using available domains by learning each dependency between pairs of domains. We evaluate our approach in three tasks performing i) synthetic dataset with image translation, ii) real-world task of semantic segmentation for medical images, and iii) real-world task of facial landmark detection.
翻译:在本文中,我们调查了多域翻译问题:考虑到一个以美元计域元的元素,我们想在另一个域生成一个相应的美元样本,以美元为美元,反之亦然。在多个领域获得监督可能是一项乏味的任务,我们还提议,当监督工作以一对美元(a,b)\sim A times B$的形式提供时,从一个领域到另一个领域学习这一翻译,并利用可能的未保存数据。我们引入了一个新的统一框架,称为Lient Space 映射(\ model), 利用多重假设从每个领域学习潜在空间。与现有方法不同,我们提议通过学习不同领域对口的每个依赖关系,进一步规范每个潜在空间。我们评估了我们在三个任务中的做法,一是用图像翻译合成数据集,二是医学图像真实世界的语义分解任务,三是真实世界面貌标志性检测任务。