In mixed-initiative co-creation tasks, wherein a human and a machine jointly create items, it is important to provide multiple relevant suggestions to the designer. Quality-diversity algorithms are commonly used for this purpose, as they can provide diverse suggestions that represent salient areas of the solution space, showcasing designs with high fitness and wide variety. Because generated suggestions drive the search process, it is important that they provide inspiration, but also stay aligned with the designer's intentions. Additionally, often many interactions with the system are required before the designer is content with a solution. In this work, we tackle these challenges with an interactive constrained MAP-Elites system that leverages emitters to learn the preferences of the designer and then use them in automated steps. By learning preferences, the generated designs remain aligned with the designer's intent, and by applying automatic steps, we generate more solutions per user interaction, giving a larger number of choices to the designer and thereby speeding up the search. We propose a general framework for preference-learning emitters (PLEs) and apply it to a procedural content generation task in the video game Space Engineers. We built an interactive application for our algorithm and performed a user study with players.
翻译:在混合式共创建作业中,即在其中人和机器共同创建条目,提供多个相关建议以供设计师使用非常重要。 品质多样性算法通常用于此目的,因为它们可以提供代表解决方案空间突出区域的多种建议,展示具有高适应性和广泛多样性的设计。 由于生成的建议驱动搜索过程,因此它们提供灵感但又保持与设计师的意图一致非常重要。 此外,通常需要与系统交互多次才能使设计师满意。 在此工作中,我们利用发射器学习设计师的偏好并将其用于自动化步骤,以解决这些挑战,并创建交互式约束MAP-Elites系统。 通过学习偏好,生成的设计保持与设计师的意图一致,通过应用自动化步骤,我们在每次用户交互中生成更多的解决方案,为设计师提供更多选择,从而加快搜索。 我们提出了一个偏好学习发射器(PLE)的一般框架,并将其应用于视频游戏空间工程师中的程序内容生成任务。 我们为我们的算法构建了一个交互式应用程序,并与玩家进行了用户研究。