The automatic search performance of search engines has become an essential part of measuring the difference in user experience. An efficient automatic search system can significantly improve the performance of search engines and increase user traffic. Hadoop has strong data integration and analysis capabilities, while R has excellent statistical capabilities in linear regression. This article will propose a linear regression based on Hadoop and R to quantify the efficiency of the automatic retrieval system. We use R's functional properties to transform the user's search results upon linear correlations. In this way, the final output results have multiple display forms instead of web page preview interfaces. This article provides feasible solutions to the drawbacks of current search engine algorithms lacking once or twice search accuracies and multiple types of search results. We can conduct personalized regression analysis for user's needs with public datasets and optimize resources integration for most relevant information.
翻译:搜索引擎的自动搜索性能已成为衡量用户经验差异的一个重要部分。高效的自动搜索系统可以大大改善搜索引擎的性能,增加用户流量。Hadoop拥有强大的数据整合和分析能力,R在线性回归方面拥有极好的统计能力。此篇文章将提出基于Hadoop和R的线性回归,以量化自动检索系统的效率。我们使用R的功能属性来根据线性相关关系转换用户的搜索结果。这样,最终输出结果有多种显示形式,而不是网页预览界面。这篇文章为目前搜索引擎算法缺乏一两次搜索精度和多种搜索结果的缺陷提供了可行的解决方案。我们可以用公共数据集对用户的需求进行个性回归分析,并优化最相关信息的资源整合。