In many applications of survival data analysis, the individuals are treated in different medical centres or belong to different clusters defined by geographical or administrative regions. The analysis of such data requires accounting for between-cluster variability. Ignoring such variability would impose unrealistic assumptions in the analysis and could affect the inference on the statistical models. We develop a novel parametric mixed-effects general hazard (MEGH) model that is particularly suitable for the analysis of clustered survival data. The proposed structure generalises the mixed-effects proportional hazards (MEPH) and mixed-effects accelerated failure time (MEAFT) structures, among other structures, which are obtained as special cases of the MEGH structure. We develop a likelihood-based algorithm for parameter estimation in general subclasses of the MEGH model, which is implemented in our R package {\tt MEGH}. We propose diagnostic tools for assessing the random effects and their distributional assumption in the proposed MEGH model. We investigate the performance of the MEGH model using theoretical and simulation studies, as well as a real data application on leukemia.
翻译:在许多生存数据分析应用中,个人在不同的医疗中心接受治疗,或属于由地理或行政区域界定的不同群组。对这些数据的分析要求对组别之间的变异性进行衡算。这种变异性在分析中会造成不切实际的假设,并可能影响统计模型的推论。我们开发了一种新的参数混合效应模型,特别适合对集群生存数据进行分析。拟议的结构概括了混合效应成比例危害(MEPH)和混合效应加速故障时间(MEAFT)结构,以及其他结构,这些结构是作为MEGH结构的特殊案例取得的。我们为MEGH模型的一般子类参数估算开发了一种基于可能性的算法,该算法在我们的R包 RTMEGH}中实施。我们提出了诊断工具,用以评估随机效应及其在拟议的MEGH模型中的分布假设。我们利用理论和模拟研究以及白血病的实际数据应用,对MEGH模型的性能进行了调查。