The proliferation of deepfake media is raising concerns among the public and relevant authorities. It has become essential to develop countermeasures against forged faces in social media. This paper presents a comprehensive study on two new countermeasure tasks: multi-face forgery detection and segmentation in-the-wild. Localizing forged faces among multiple human faces in unrestricted natural scenes is far more challenging than the traditional deepfake recognition task. To promote these new tasks, we have created the first large-scale dataset posing a high level of challenges that is designed with face-wise rich annotations explicitly for face forgery detection and segmentation, namely OpenForensics. With its rich annotations, our OpenForensics dataset has great potentials for research in both deepfake prevention and general human face detection. We have also developed a suite of benchmarks for these tasks by conducting an extensive evaluation of state-of-the-art instance detection and segmentation methods on our newly constructed dataset in various scenarios. The dataset, benchmark results, codes, and supplementary materials will be publicly available on our project page: https://sites.google.com/view/ltnghia/research/openforensics


翻译:深假媒体的扩散引起了公众和有关当局的关切,因此,必须针对社交媒体中的伪造面孔制定对策,本文件对两项新的反措施任务进行了全面研究:在不受限制的自然场景中将多人面孔本地化比传统的深假识别任务更具挑战性。为了推动这些新任务,我们创建了第一个大型数据集,它具有面孔丰富的说明,明确用来识别和分割面罩,即OpenForensics。我们开放面孔数据集具有丰富的说明,具有在深假预防和一般人面孔探测两方面进行研究的巨大潜力。我们还为这些任务制定了一套基准,广泛评估了在各种情景中我们新建的数据集上的最新实例检测和分解方法。将在我们的项目网页上公开提供数据集、基准结果、代码和补充材料:https://sites.goglegle.com/view/ltnghia/research/opforensis。

1
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
6+阅读 · 2021年7月26日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关VIP内容
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员