Estimating uncertainties associated with the predictions of Machine Learning (ML) models is of crucial importance to assess their robustness and predictive power. In this submission, we introduce MAPIE (Model Agnostic Prediction Interval Estimator), an open-source Python library that quantifies the uncertainties of ML models for single-output regression and multi-class classification tasks. MAPIE implements conformal prediction methods, allowing the user to easily compute uncertainties with strong theoretical guarantees on the marginal coverages and with mild assumptions on the model or on the underlying data distribution. MAPIE is hosted on scikit-learn-contrib and is fully "scikit-learn-compatible". As such, it accepts any type of regressor or classifier coming with a scikit-learn API. The library is available at: https://github.com/scikit-learn-contrib/MAPIE/.
翻译:估算与机器学习模型预测有关的不确定性对于评估其稳健性和预测力至关重要。我们在此提交材料中引入了MAPIE(Model Agnistic Survementionion Interval Estimator),这是一个开放源码的Python图书馆,它量化了单输出回归和多级分类任务的 ML 模型的不确定性。MAPIE 实施符合要求的预测方法,使用户能够很容易地用对边缘覆盖的强烈理论保证和对模型或基本数据分布的轻度假设来计算不确定性。MAPIE 以 scikit- Learn-contrib为主, 完全为“sikit-learn-comparn-compart”。因此,它接受任何类型的回归器或分类器,并带有 scikit-learn API。图书馆的网址是: https://gitub.com/scikit-learn-contrib/MADIE/。