We propose a novel conditional quantile prediction method based on complete subset averaging (CSA) for quantile regressions. All models under consideration are potentially misspecified and the dimension of regressors goes to infinity as the sample size increases. Since we average over the complete subsets, the number of models is much larger than the usual model averaging method which adopts sophisticated weighting schemes. We propose to use an equal weight but select the proper size of the complete subset based on the leave-one-out cross-validation method. Building upon the theory of Lu and Su (2015), we investigate the large sample properties of CSA and show the asymptotic optimality in the sense of Li (1987). We check the finite sample performance via Monte Carlo simulations and empirical applications.
翻译:我们提出一种新的有条件的量化预测方法,其依据是四分位回归的完整子集平均值(CSA) 。审议中的所有模型都有可能被错误地描述,随着样本规模的增加,递减器的尺寸会变得无穷无尽。由于我们在全部子集中平均,模型的数量远大于采用复杂加权办法的通常平均模型方法。我们提议使用同等的重量,但根据休假一分制交叉验证法选择完整子集的适当大小。我们根据Lu和Su(2015年)的理论,调查CSA的大样本特性,并显示李(1987年)意义上的无现物最佳性。我们通过蒙特卡洛模拟和实验应用来检查有限的样本性能。