Hate speech is plaguing the cyberspace along with user-generated content. This paper investigates the role of conversational context in the annotation and detection of online hate and counter speech, where context is defined as the preceding comment in a conversation thread. We created a context-aware dataset for a 3-way classification task on Reddit comments: hate speech, counter speech, or neutral. Our analyses indicate that context is critical to identify hate and counter speech: human judgments change for most comments depending on whether we show annotators the context. A linguistic analysis draws insights into the language people use to express hate and counter speech. Experimental results show that neural networks obtain significantly better results if context is taken into account. We also present qualitative error analyses shedding light into (a) when and why context is beneficial and (b) the remaining errors made by our best model when context is taken into account.
翻译:仇恨言论与用户生成的内容一起困扰着网络空间。 本文调查了在线仇恨言论和反言论在批注和检测中的对话背景作用, 其背景被定义为在谈话线索中的前述评论。 我们为Redd 评论的三线分类任务创建了背景认知数据集: 仇恨言论、 反言论或中性。 我们的分析表明,背景对于识别仇恨和反言论至关重要: 多数评论的人类判断变化取决于我们是否展示了背景。 语言分析使人们深入了解人们用来表达仇恨和反言论的语言。 实验结果显示,如果将环境考虑在内,神经网络将获得更好的效果。 我们还对以下内容进行了定性错误分析:(a) 环境何时和为什么有益,以及(b) 在考虑背景时,我们的最佳模式所留下的错误。