We propose in this paper to exploit convolutional low density generator matrix (LDGM) codes for transmission of Bernoulli sources over binary-input output-symmetric (BIOS) channels. To this end, we present a new framework to prove the coding theorems for linear codes, which unifies the channel coding theorem, the source coding theorem and the joint source-channel coding (JSCC) theorem. In the presented framework, the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over BIOS channels, entropy-achieving for Bernoulli sources, and also system-capacity-achieving for JSCC applications. A lower bound on the bit-error rate (BER) is derived for linear codes, which can be used to predict the error floors and hence serves as a simple tool to design the JSCC system. Numerical results show that the convolutional LDGM codes perform well in the waterfall region and match well with the derived error floors, which can be lowered down if required by simply increasing the encoding memory.
翻译:我们在此文件中建议利用低密度源代码( LDGM) 来传输 Bernoulli 源代码, 用于在二进制输出对称( BIOS) 频道上传输 Bernoulli 源代码。 为此, 我们提出一个新的框架, 以证明线性代码的编码方程式。 这个新框架可以将频道的编码编码、 源代码和联合源- 通道编码( JSCC) 理论词典统一起来。 在这个框架中, 我们证明 Bernoulli 源代码( BGMCs) 可以在 BIOS 频道上实现能力下调, 为 Bernoulli 源加密典型代码列表的大小, 而 则使用噪音平价检查位元来从列表中选择最大可能的代码。 这个线性代码的新框架允许系统化的元代码和对等比值代码以不同的方式和不同渠道传输。 我们证明 Bernoul 源代码( BGMDCs) 可以在 BIOS 频道上实现能力下调, 为 Bernoullian- 源源代码, 源码的系统- 源代码也能够将系统- 的系统- 源码 格式化到 NEDRA 工具 。