Vision transformers (ViTs) have achieved impressive results on various computer vision tasks in the last several years. In this work, we study the capability of frozen ViTs, pretrained only on visual data, to generalize to audio-visual data without finetuning any of its original parameters. To do so, we propose a latent audio-visual hybrid (LAVISH) adapter that adapts pretrained ViTs to audio-visual tasks by injecting a small number of trainable parameters into every layer of a frozen ViT. To efficiently fuse visual and audio cues, our LAVISH adapter uses a small set of latent tokens, which form an attention bottleneck, thus, eliminating the quadratic cost of standard cross-attention. Compared to the existing modality-specific audio-visual methods, our approach achieves competitive or even better performance on various audio-visual tasks while using fewer tunable parameters and without relying on costly audio pretraining or external audio encoders. Our code is available at https://genjib.github.io/project_page/LAVISH/
翻译:过去几年来,视觉变压器(ViVTs)在各种计算机视觉任务方面取得了令人印象深刻的成果。在这项工作中,我们研究冷冻的ViTs的能力,只对视觉数据进行预先培训,在不对其原有参数作任何微调的情况下,对视听数据进行普及;为此,我们提议了一种潜在的视听混合(LAVISH)适配器,通过将少量可训练参数注入冻结的ViT的每一层,使ViTs适应视听任务。为了有效地结合视觉和声频提示,我们的LAVISS适配器使用一小套潜在标志,形成注意的瓶颈,从而消除标准的交叉注意的二次成本。与现有的特定模式视听方法相比,我们的方法在使用较少的金枪鱼参数的同时,在不依赖昂贵的音频前训练或外部音频编码的情况下,在各种视听任务上取得了竞争性甚至更好的表现。我们的代码可在https://genjib.github.io/production_page/LAVISHSH/。