We present an efficient machine learning (ML) algorithm for predicting any unknown quantum process $\mathcal{E}$ over $n$ qubits. For a wide range of distributions $\mathcal{D}$ on arbitrary $n$-qubit states, we show that this ML algorithm can learn to predict any local property of the output from the unknown process~$\mathcal{E}$, with a small average error over input states drawn from $\mathcal{D}$. The ML algorithm is computationally efficient even when the unknown process is a quantum circuit with exponentially many gates. Our algorithm combines efficient procedures for learning properties of an unknown state and for learning a low-degree approximation to an unknown observable. The analysis hinges on proving new norm inequalities, including a quantum analogue of the classical Bohnenblust-Hille inequality, which we derive by giving an improved algorithm for optimizing local Hamiltonians. Numerical experiments on predicting quantum dynamics with evolution time up to $10^6$ and system size up to $50$ qubits corroborate our proof. Overall, our results highlight the potential for ML models to predict the output of complex quantum dynamics much faster than the time needed to run the process itself.
翻译:我们提出了一种高效的机器学习(ML)算法,用于预测涉及$n$个量子比特的任意未知量子过程$\mathcal{E}$。针对广泛的分布$\mathcal{D}$,我们展示了这一ML算法能够学习预测未知过程$\mathcal{E}$的输出的任何局部属性,对从$\mathcal{D}$中抽取的输入态的平均误差很小。即使未知过程是具有指数个门的量子电路,该ML算法也具有计算效率。我们的算法结合了用于学习未知态性质和学习未知观测量的低阶逼近的高效过程。分析依赖于证明新的范数不等式,包括我们通过提供用于最优化局部哈密顿量的改进算法导出的,类似博纳布洛斯-希尔不等式的量子模拟。通过对量子动力学的预测进行演化时间长达$10^6$和系统大小高达50个量子比特的数值实验,验证了我们的证明。总之,我们的结果突出了ML模型用于预测复杂量子动力学输出所需的时间要比运行过程本身的时间快得多的潜力。