Deformable convolution networks (DCNs) proposed to address the image recognition with geometric or photometric variations typically involve deformable convolution that convolves on arbitrary locations of input features. The locations change with different inputs and induce considerable dynamic and irregular memory accesses which cannot be handled by classic neural network accelerators (NNAs). Moreover, bilinear interpolation (BLI) operation that is required to obtain deformed features in DCNs also cannot be deployed on existing NNAs directly. Although a general purposed processor (GPP) seated along with classic NNAs can process the deformable convolution, the processing on GPP can be extremely slow due to the lack of parallel computing capability. To address the problem, we develop a DCN accelerator on existing NNAs to support both the standard convolution and deformable convolution. Specifically, for the dynamic and irregular accesses in DCNs, we have both the input and output features divided into tiles and build a tile dependency table (TDT) to track the irregular tile dependency at runtime. With the TDT, we further develop an on-chip tile scheduler to handle the dynamic and irregular accesses efficiently. In addition, we propose a novel mapping strategy to enable parallel BLI processing on NNAs and apply layer fusion techniques for more energy-efficient DCN processing. According to our experiments, the proposed accelerator achieves orders of magnitude higher performance and energy efficiency compared to the typical computing architectures including ARM, ARM+TPU, and GPU with 6.6\% chip area penalty to a classic NNA.


翻译:为处理与几何或光度变异有关的图像识别,提议采用变形变形网络(DCNs),以解决与几何或光度变异有关的图像识别问题,通常涉及在输入特性的任意位置上发生变形变形的变形,不同输入地点发生改变,并导致大量动态和不规则的内存访问,而经典神经网络加速器(NNAs)无法处理这些问题。此外,为获取 DCNs变形功能而需要双线间调(BLI)操作,也不可能直接在现有的非常规核子中部署。尽管与经典非常规非常规核产品同时座落的普通目的处理器(GPP)能够处理变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
专知会员服务
50+阅读 · 2021年5月19日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
60+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
使用tinc构建full mesh结构的VPN
运维帮
68+阅读 · 2018年12月1日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
3+阅读 · 2020年4月29日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年5月19日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
60+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
使用tinc构建full mesh结构的VPN
运维帮
68+阅读 · 2018年12月1日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员