The growing integration of distributed integrated sensing and communication (ISAC) with closed-loop control in intelligent networks demands efficient information transmission under stringent bandwidth constraints. To address this challenge, this paper proposes a unified framework for goal-oriented semantic communication in distributed SCC systems. Building upon Weaver's three-level model, we establish a hierarchical semantic formulation with three error levels (L1: observation reconstruction, L2: state estimation, and L3: control) to jointly optimize their corresponding objectives. Based on this formulation, we propose a unified goal-oriented semantic compression and rate adaptation framework that is applicable to different semantic error levels and optimization goals across the SCC loop. A rate-limited multi-sensor LQR system is used as a case study to validate the proposed framework. We employ a GRU-based AE for semantic compression and a PPO-based rate adaptation algorithm that dynamically allocates transmission rates across sensors. Results show that the proposed framework effectively captures task-relevant semantics and adapts its resource allocation strategies across different semantic levels, thereby achieving level-specific performance gains under bandwidth constraints.


翻译:随着分布式集成传感与通信(ISAC)与闭环控制在智能网络中的日益融合,如何在严格的带宽约束下实现高效信息传输成为迫切需求。为应对这一挑战,本文提出了一种面向目标的语义通信统一框架,适用于分布式SCC系统。基于Weaver的三层模型,我们建立了一个包含三个误差层级(L1:观测重建,L2:状态估计,L3:控制)的层次化语义表述,以联合优化其相应目标。基于此表述,我们提出了一种统一的面向目标语义压缩与速率适配框架,该框架可适用于SCC环路中不同的语义误差层级和优化目标。我们以速率受限的多传感器LQR系统作为案例研究来验证所提框架。我们采用基于GRU的自动编码器进行语义压缩,并利用基于PPO的速率适配算法动态分配各传感器的传输速率。结果表明,所提框架能有效捕获任务相关语义,并在不同语义层级间自适应调整资源分配策略,从而在带宽约束下实现针对特定层级的性能提升。

0
下载
关闭预览

相关内容

【CVPR2024】VideoMAC: 视频掩码自编码器与卷积神经网络
专知会员服务
17+阅读 · 2024年3月4日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员