Accurate prediction of flow delay is essential for optimizing and managing modern communication networks. We investigate three levels of modeling for this task. First, we implement a heterogeneous GNN with attention-based message passing, establishing a strong neural baseline. Second, we propose FlowKANet in which Kolmogorov-Arnold Networks replace standard MLP layers, reducing trainable parameters while maintaining competitive predictive performance. FlowKANet integrates KAMP-Attn (Kolmogorov-Arnold Message Passing with Attention), embedding KAN operators directly into message-passing and attention computation. Finally, we distill the model into symbolic surrogate models using block-wise regression, producing closed-form equations that eliminate trainable weights while preserving graph-structured dependencies. The results show that KAN layers provide a favorable trade-off between efficiency and accuracy and that symbolic surrogates emphasize the potential for lightweight deployment and enhanced transparency.
翻译:准确预测流延迟对于优化和管理现代通信网络至关重要。本研究针对该任务探讨了三个层次的建模方法。首先,我们实现了一种基于注意力消息传递的异构图神经网络,建立了强大的神经基线模型。其次,我们提出了FlowKANet模型,该模型使用Kolmogorov-Arnold网络替代标准多层感知机层,在保持竞争力的预测性能的同时减少了可训练参数。FlowKANet集成了KAMP-Attn(基于注意力的Kolmogorov-Arnold消息传递)机制,将KAN算子直接嵌入消息传递与注意力计算过程。最后,我们通过分块回归将模型蒸馏为符号代理模型,生成闭式方程表达式,在消除可训练权重的同时保留了图结构依赖关系。实验结果表明:KAN层在效率与精度之间提供了更优的权衡,而符号代理模型则凸显了轻量化部署与增强透明度的潜力。