We study the Joint Routing-Assignment (JRA) problem in which items must be assigned one-to-one to placeholders while simultaneously determining a Hamiltonian cycle visiting all nodes exactly once. Extending previous exact MIP solvers with Gurobi and cutting-plane subtour elimination, we develop a solver tailored for practical packaging-planning scenarios with richer constraints.These include multiple placeholder options, time-frame restrictions, and multi-class item packaging. Experiments on 46 mobile manipulation datasets demonstrate that the proposed MIP approach achieves global optima with stable and low computation times, significantly outperforming the shaking-based exact solver by up to an orders of magnitude. Compared to greedy baselines, the MIP solutions achieve consistent optimal distances with an average deviation of 14% for simple heuristics, confirming both efficiency and solution quality. The results highlight the practical applicability of MIP-based JRA optimization for robotic packaging, motion planning, and complex logistics .
翻译:本文研究联合路由分配问题,其中物品必须与占位符进行一对一匹配,同时确定访问所有节点恰好一次的哈密顿回路。我们在现有基于Gurobi的精确混合整数规划求解器基础上,结合割平面子回路消除策略,开发了适用于实际包装规划场景的求解器,该场景包含更丰富的约束条件:多占位符选项、时间窗限制以及多类别物品包装。在46个移动操作数据集上的实验表明,所提出的混合整数规划方法能以稳定且较低的计算时间获得全局最优解,其性能显著优于基于震荡的精确求解器,最高可达数量级优势。与贪婪基线方法相比,混合整数规划解能保持稳定的最优路径长度,简单启发式方法的平均偏差为14%,验证了该方法在求解效率与质量上的双重优势。研究结果凸显了基于混合整数规划的联合路由分配优化在机器人包装、运动规划及复杂物流系统中的实际应用价值。