We give almost-linear-time algorithms for constructing sparsifiers with $n\ poly(\log n)$ edges that approximately preserve weighted $(\ell^{2}_2 + \ell^{p}_p)$ flow or voltage objectives on graphs. For flow objectives, this is the first sparsifier construction for such mixed objectives beyond unit $\ell_p$ weights, and is based on expander decompositions. For voltage objectives, we give the first sparsifier construction for these objectives, which we build using graph spanners and leverage score sampling. Together with the iterative refinement framework of [Adil et al, SODA 2019], and a new multiplicative-weights based constant-approximation algorithm for mixed-objective flows or voltages, we show how to find $(1+2^{-\text{poly}(\log n)})$ approximations for weighted $\ell_p$-norm minimizing flows or voltages in $p(m^{1+o(1)} + n^{4/3 + o(1)})$ time for $p=\omega(1),$ which is almost-linear for graphs that are slightly dense ($m \ge n^{4/3 + o(1)}$).
翻译:我们给出了几乎线性时间算法, 用于建造以$n\ 聚( log n) 的加压器, 其边端大约保存了在图形上的加权 $( ell ⁇ 2 ⁇ 2 +\ ell ⁇ p ⁇ p) 流或电压目标。 对于流量目标, 这是在单位重量单位$_ p 重量以外的此类混合目标的首次加压器构建。 对于电压目标, 我们给出了用于这些目标的第一批加压器构造, 我们用图形测距器和杠杆分数取样来构建。 加上[ 阿德尔等人, SODO 20199 的迭代精化框架, 以及基于混合目标流或电流的复倍比重计算法, 我们展示了如何找到$(1+2 ⁇ -\ text{poly}( log nn) 为加权 $( ell_ p$- nom) 最大限度地减少流量或电流的近值, $( m++ ga) (1) 美元( n+_ 美元) + 美元/ a} 0. 美元( m=== 美元) (美元) (美元)。