This paper presents an approach to deal with safety of dynamical systems in presence of multiple non-convex unsafe sets. While optimal control and model predictive control strategies can be employed in these scenarios, they suffer from high computational complexity in case of general nonlinear systems. Leveraging control barrier functions, on the other hand, results in computationally efficient control algorithms. Nevertheless, when safety guarantees have to be enforced alongside stability objectives, undesired asymptotically stable equilibrium points have been shown to arise. We propose a computationally efficient optimization-based approach which allows us to ensure safety of dynamical systems without introducing undesired equilibria even in presence of multiple non-convex unsafe sets. The developed control algorithm is showcased in simulation and in a real robot navigation application.
翻译:本文介绍了一种在多种非隐形不安全装置存在的情况下处理动态系统安全的方法。 虽然在这些假设情景中可以采用最佳控制和模型预测控制战略,但在一般非线性系统的情况下,这些假设情景的计算复杂性很高。另一方面,利用控制屏障功能导致计算效率高的控制算法。然而,当安全保障必须与稳定目标同时执行时,已经证明出现了不理想的即时稳定平衡点。我们提议一种基于计算效率高的优化方法,使我们能够确保动态系统安全,而不引入不理想的平衡,即使存在多种非隐形不安全装置。开发的控制算法在模拟和真正的机器人导航应用中展示。