This letter studies a cellular-connected unmanned aerial vehicle (UAV) scenario, in which a UAV user communicates with ground base stations (GBSs) in cellular uplink by sharing the spectrum with ground users (GUs). To deal with the severe air-to-ground (A2G) co-channel interference, we consider an adaptive interference cancellation (IC) approach, in which each GBS can decode the GU's messages by adaptively switching between the modes of IC (i.e., precanceling the UAV's resultant interference) and treating interference as noise (TIN). By designing the GBSs' decoding modes, jointly with the wireless resource allocation and the UAV's trajectory control, we maximize the UAV's data-rate throughput over a finite mission period, while ensuring the minimum data-rate requirements at individual GUs. We propose an efficient algorithm to solve the throughput maximization problem by using the techniques of alternating optimization and successive convex approximation (SCA). Numerical results show that our proposed design significantly improves the UAV's throughput as compared to the benchmark schemes without the adaptive IC and/or trajectory optimization.
翻译:本信研究了一种与蜂窝相连的无人驾驶飞行器(无人驾驶飞行器)情景,在这种情景中,无人驾驶飞行器的用户通过与地面用户共享频谱,与蜂窝中的地面基地站进行交流。 为了应对严重的空对地(A2G)联合通道干扰,我们考虑采用适应性干扰取消(IC)办法,使每个全球定位系统都能通过适应性地转换国际飞行器模式(即预先设定无人驾驶飞行器的后继干扰)和将干扰作为噪音处理(TIN),对GBS的解码模式进行设计,与无线资源分配和无人驾驶飞行器的轨迹控制联合设计。 为了在一定的飞行任务期间最大限度地实现无人驾驶飞行器的数据率输出,同时确保单个全球导航卫星系统的最低数据率要求。 我们提出一种高效的算法,通过使用交替优化和连续调控波式对等技术(SCA)解决吞吐量最大化问题。 数字结果显示,我们拟议的设计大大改进了无人驾驶飞行器的吞吐量,而没有进行适应性调整的IC/最优化的基准计划。