Two-sample multiple testing problems of sparse spatial data are frequently arising in a variety of scientific applications. In this article, we develop a novel neighborhood-assisted and posterior-adjusted (NAPA) approach to incorporate both the spatial smoothness and sparsity type side information to improve the power of the test while controlling the false discovery of multiple testing. We translate the side information into a set of weights to adjust the $p$-values, where the spatial pattern is encoded by the ordering of the locations, and the sparsity structure is encoded by a set of auxiliary covariates. We establish the theoretical properties of the proposed test, including the guaranteed power improvement over some state-of-the-art alternative tests, and the asymptotic false discovery control. We demonstrate the efficacy of the test through intensive simulations and two neuroimaging applications.
翻译:在各种科学应用中,稀有空间数据的多种测试问题经常出现。在本篇文章中,我们开发了一种新的邻里辅助和后游调整(NAPA)方法,将空间平滑和宽度型侧面信息纳入其中,以提高测试的力量,同时控制多次测试的虚假发现。我们将侧面信息转换成一套加权,以调整美元值,其中空间模式由地点的顺序编码,而空间结构则由一组辅助共变体编码。我们确立了拟议测试的理论属性,包括对一些最先进的替代测试的保障性功率改进,以及无节制的虚假发现控制。我们通过密集模拟和两个神经成像应用来展示测试的功效。