We consider a wireless communication system that consists of a background emitter, a transmitter, and an adversary. The transmitter is equipped with a deep neural network (DNN) classifier for detecting the ongoing transmissions from the background emitter and transmits a signal if the spectrum is idle. Concurrently, the adversary trains its own DNN classifier as the surrogate model by observing the spectrum to detect the ongoing transmissions of the background emitter and generate adversarial attacks to fool the transmitter into misclassifying the channel as idle. This surrogate model may differ from the transmitter's classifier significantly because the adversary and the transmitter experience different channels from the background emitter and therefore their classifiers are trained with different distributions of inputs. This system model may represent a setting where the background emitter is a primary user, the transmitter is a secondary user, and the adversary is trying to fool the secondary user to transmit even though the channel is occupied by the primary user. We consider different topologies to investigate how different surrogate models that are trained by the adversary (depending on the differences in channel effects experienced by the adversary) affect the performance of the adversarial attack. The simulation results show that the surrogate models that are trained with different distributions of channel-induced inputs severely limit the attack performance and indicate that the transferability of adversarial attacks is neither readily available nor straightforward to achieve since surrogate models for wireless applications may significantly differ from the target model depending on channel effects.


翻译:我们考虑的是由背景发射者、发报机和对手组成的无线通信系统。 发报机配备了一个深神经网络分类器, 以探测背景发射者不断发送的信号, 如果光谱闲置, 则发送者将发送信号。 同时, 对手将自己的 DN 分类器作为代理模型, 通过观察频谱来检测背景发射者不断发送的信号, 并产生对抗性攻击, 从而将发射者错误地分类为闲置的频道。 这种代理模型可能与发报机分类器的分类器大不相同, 因为对手和发报者都经历背景发射者的不同频道效果, 因此其分类者经过不同渠道效果的渠道, 并因此接受不同的投入分配方式的培训。 这个系统模型可能代表背景发射者是主要用户, 发射者是第二用户, 对手试图欺骗第二用户发送信号, 即使主要用户占用了频道。 我们考虑不同的方式来调查对手所训练的直截面的套模型( 取决于对手在频道上的不同效果), 其分类器分类器的分导程序在不同的频道应用上的不同渠道效果, 其分流式攻击性测试性攻击后, 测试性攻击性变变变变变后的结果显示, 演变变后, 变变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变 变

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
已删除
将门创投
11+阅读 · 2019年7月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Metric Attack for Person Re-identification
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员