We propose a method to track the 6D pose of an object over time, while the object is under non-prehensile manipulation by a robot. At any given time during the manipulation of the object, we assume access to the robot joint controls and an image from a camera looking at the scene. We use the robot joint controls to perform a physics-based prediction of how the object might be moving. We then combine this prediction with the observation coming from the camera, to estimate the object pose as accurately as possible. We use a particle filtering approach to combine the control information with the visual information. We compare the proposed method with two baselines: (i) using only an image-based pose estimation system at each time-step, and (ii) a particle filter which does not perform the computationally expensive physics predictions, but assumes the object moves with constant velocity. Our results show that making physics-based predictions is worth the computational cost, resulting in more accurate tracking, and estimating object pose even when the object is not clearly visible to the camera.
翻译:我们提出一个方法来跟踪一个物体的 6D 姿势, 而该物体是由机器人在非致命的情况下操纵的。 在操作该物体期间的任何一个特定时间, 我们假设可以访问机器人联合控制器, 并从一个对现场的摄像头中获取图像。 我们使用机器人联合控制器对物体移动的方式进行物理预测。 我们然后将这一预测与来自相机的观测结合起来, 尽可能准确地估计物体的姿势。 我们使用粒子过滤法来将控制信息与视觉信息结合起来。 我们用两个基线来比较拟议的方法:(i) 在每个时间步骤只使用一个基于图像的姿势估计系统, 以及(ii) 一个粒子过滤器, 它不进行计算成本昂贵的物理预测, 而是以恒定速度进行物体移动。 我们的结果表明, 进行基于物理的预测是值得计算的成本, 导致更准确的跟踪, 并且估计物体的姿势, 即使该天体在摄像器无法清晰可见的情况下也如此 。