Current pandemic has caused the medical system to operate under high load. To relieve it, robots with high autonomy can be used to effectively execute contactless operations in hospitals and reduce cross-infection between medical staff and patients. Although semantic Simultaneous Localization and Mapping (SLAM) technology can improve the autonomy of robots, semantic object association is still a problem that is worthy of being studied. The key to solving this problem is to correctly associate multiple object measurements of one object landmark by using semantic information, and to refine the pose of object landmark in real time. To this end, we propose a hierarchical object association strategy and a pose-refinement approach. The former one consists of two levels, i.e., a short-term object association and a global one. In the first level, we employ the multiple-object-tracking for short-term object association, through which the incorrect association among objects whose locations are close and appearances are similar can be avoided. Moreover, the short-term object association can provide more abundant object appearance and more robust estimation of object pose for the global object association in the second level. To refine the object pose in the map, we develop an approach to choose the optimal object pose from all object measurements associated with an object landmark. The proposed method is comprehensively evaluated on seven simulated hospital sequences1, a real hospital environment and the KITTI dataset. Experimental results show that our method has an obviously improvement in terms of robustness and accuracy for the object association and the trajectory estimation in the semantic SLAM.


翻译:为了缓解这一疾病,高度自主的机器人可以被用于在医院有效开展不接触的作业,并减少医务人员和病人之间的交叉感染。虽然语义同步本地化和绘图(SLAM)技术可以提高机器人的自主性,但语义对象关联仍然是一个值得研究的问题。解决这一问题的关键是使用语义信息正确结合一个目标标志的多重物体测量结果,并实时改进目标标志的构成。为此,我们提议了一个等级级目标关联战略和一个配置精度的方法。前者由两个级别组成,即短期目标关联和全球一级。在第一级,我们使用多点跟踪短期目标关联的方法,通过这种方法可以避免位置接近和外观相似的物体之间的不正确关联。此外,短期目标关联可以提供更丰富的对象外观,并更准确地估计全球目标关联的物体组合情况。我们从第二个级别,提出一个等级目标关联战略和全球目标组合的配置精度,即一个短期目标关联,一个短期目标关联性关联性关联性关联性关联性联系和一个全球目标组合。我们用一种最精确的方法来改进一个模型化的实验室测算法,然后用一个最精确的方法来显示一个最精确的实验室级的轨道。

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
专知会员服务
51+阅读 · 2020年10月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【泡泡一分钟】用于视角可变重定位的语义地图构建
泡泡机器人SLAM
19+阅读 · 2019年10月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年10月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【泡泡一分钟】用于视角可变重定位的语义地图构建
泡泡机器人SLAM
19+阅读 · 2019年10月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员