Scaling up model depth and size is now a common approach to raise accuracy in many deep learning (DL) applications, as evidenced by the widespread success of multi-billion or even trillion parameter models in natural language processing (NLP) research. Despite success in DL research and at major technology companies, broader practical adoption of such large models among domain scientists and businesses is still bottlenecked by GPU memory limits, high training costs, and low GPU availability, even on public clouds. Model selection needs further compound these resource challenges: users often need to compare dozens of models with different hyper-parameters or neural architectures to suit their specific task and dataset. In this paper, we present Hydra, a system designed to tackle such challenges by enabling out-of-the-box scaling for multi-large-model DL workloads on even commodity GPUs in a resource-efficient manner. Hydra is the first approach to holistically optimize the execution of multi-model workloads for large DL models. We do this by adapting prior "model-parallel" execution schemes to work with scalable parameter offloading across the memory hierarchy and further hybridizing this approach with task-parallel job scheduling techniques. Hydra decouples scalability of model parameters from parallelism of execution, thus enabling DL users to train even a 6-billion parameter model on a single commodity GPU. It also fully exploits the speedup potential of task parallelism in multi-GPU setups, yielding near-linear strong scaling and making rigorous model selection perhaps more practical for such models. We evaluate end-to-end performance by fine-tuning GPT-2 for language modeling. We find that Hydra offers between 50% and 100% higher training throughput than even the best settings of state-of-the-art industrial frameworks such as DeepSpeed and GPipe for multi-large-model training.


翻译:扩大模型深度和尺寸现在已成为提高许多深层次学习(DL)应用应用的准确性的共同方法,这体现在自然语言处理(NLP)研究中数十亿甚至万亿个参数模型的广泛成功。尽管在DL研究中和主要技术公司中取得了成功,但在域科学家和企业中广泛实际采用这类大型模型仍然受到资源效率高的制约,甚至公共云层的GPU内存限制、高培训成本和低GPU的可用性仍然受到制约。模型选择需要进一步增加这些资源挑战:用户往往需要将数十个模型与不同的超常参数或神经结构进行比较,以适应他们的具体任务和数据集。在本文件中,我们介绍一个旨在应对此类挑战的系统,即通过多模型存储、高超超常参数化模型或神经元结构,在更接近的记忆-更深层任务级结构中,使多模式的GL工作量超升标准,从而能够应对此类挑战。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员