Classification of an object behind a random and unknown scattering medium sets a challenging task for computational imaging and machine vision fields. Recent deep learning-based approaches demonstrated the classification of objects using diffuser-distorted patterns collected by an image sensor. These methods demand relatively large-scale computing using deep neural networks running on digital computers. Here, we present an all-optical processor to directly classify unknown objects through unknown, random phase diffusers using broadband illumination detected with a single pixel. A set of transmissive diffractive layers, optimized using deep learning, forms a physical network that all-optically maps the spatial information of an input object behind a random diffuser into the power spectrum of the output light detected through a single pixel at the output plane of the diffractive network. We numerically demonstrated the accuracy of this framework using broadband radiation to classify unknown handwritten digits through random new diffusers, never used during the training phase, and achieved a blind testing accuracy of 88.53%. This single-pixel all-optical object classification system through random diffusers is based on passive diffractive layers that process broadband input light and can operate at any part of the electromagnetic spectrum by simply scaling the diffractive features proportional to the wavelength range of interest. These results have various potential applications in, e.g., biomedical imaging, security, robotics, and autonomous driving.


翻译:随机和未知散射介质背后的物体分类为随机和未知散射介质,为计算成像和机器视觉字段规定了一项艰巨的任务。最近的深层次学习方法展示了使用图像传感器收集的散射器扭曲模式对物体进行分类的方法。这些方法要求使用数字计算机的深神经网络进行相对大型的计算。在这里,我们展示了一个全光处理器,通过使用单像素检测到的宽带光化器,通过未知的、随机的散射器直接分类不明物体。一套通过深深层学习优化的透射分吸附式漂异层,形成一个物理网络,通过随机散射器将一个输入对象的空间信息用随机散射器绘制成一个随机散射分散器,以图解散射器为基础,将一个输入光光谱的光谱进行分类。我们从数字上展示了这一框架的准确性,通过随机新扩散器对未知的手写数字进行分类,在培训阶段从未使用过,并实现了88.53%的盲检测精确度。这个单像标全光物体分类系统以随机散射式散射式散射式散射式扩散系统为基础,以被动的散射式散射式散射式散射式散射式散射式散射式扩散扩散扩散扩散扩散扩散扩散扩散扩散扩散扩散扩散扩散扩散扩散,在磁度的电磁度上,可以使电磁磁度光度光度光度光度波波波波波度光度光度波波波波波波波波波波波波波波波波波波波波变增成。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员