This paper delivers improved theoretical guarantees for the convex programming approach in low-rank matrix estimation, in the presence of (1) random noise, (2) gross sparse outliers, and (3) missing data. This problem, often dubbed as robust principal component analysis (robust PCA), finds applications in various domains. Despite the wide applicability of convex relaxation, the available statistical support (particularly the stability analysis vis-\`a-vis random noise) remains highly suboptimal, which we strengthen in this paper. When the unknown matrix is well-conditioned, incoherent, and of constant rank, we demonstrate that a principled convex program achieves near-optimal statistical accuracy, in terms of both the Euclidean loss and the $\ell_{\infty}$ loss. All of this happens even when nearly a constant fraction of observations are corrupted by outliers with arbitrary magnitudes. The key analysis idea lies in bridging the convex program in use and an auxiliary nonconvex optimization algorithm, and hence the title of this paper.
翻译:本文为低级矩阵估算的组合编程方法提供了更好的理论保障,其中显示:(1) 随机噪音,(2) 极度稀少的外源和(3) 缺失的数据。 这个问题通常被称为稳健的主要组成部分分析(robust CPA), 在不同领域都有应用。 尽管松动的放松具有广泛适用性,但现有的统计支持(特别是相对于随机噪音的稳定分析)仍然极不理想,我们在本文中强化了这一点。 当未知的组合程序条件良好、不连贯且级别不变时,我们证明一个原则性的组合程序在Euclidean损失和$\ell\ ⁇ infty}$损失两方面都达到了接近最佳的统计准确性。 所有这些都发生于几乎一成不变的观测被具有任意规模的外源破坏之时。 关键的分析理念在于连接使用中的螺旋程序,以及辅助的非convex优化算法, 以及本文的标题。