Detecting the presence of project management anti-patterns (AP) currently requires experts on the matter and is an expensive endeavor. Worse, experts may introduce their individual subjectivity or bias. Using the Fire Drill AP, we first introduce a novel way to translate descriptions into detectable AP that are comprised of arbitrary metrics and events such as logged time or maintenance activities, which are mined from the underlying source code or issue-tracking data, thus making the description objective as it becomes data-based. Secondly, we demonstrate a novel method to quantify and score the deviations of real-world projects to data-based AP descriptions. Using nine real-world projects that exhibit a Fire Drill to some degree, we show how to further enhance the translated AP. The ground truth in these projects was extracted from two individual experts and consensus was found between them. Our evaluation spans four kinds of patterns, where the first is purely derived from description, the second type is enhanced by data, and the third kind is derived from data only. The fourth type then is a derivative meta-process pattern. The Fire Drill AP as translated from description only for either, source code- or issue-tracking-based detection, shows weak potential of confidently detecting the presence of the anti-pattern in a project. Enriching the AP with data from real-world projects significantly improves detection. Using patterns derived from data only leads to almost perfect correlations of the scores with the ground truth. Some APs share symptoms with the Fire Drill AP, and we conclude that the presence of similar patterns is most certainly detectable. Furthermore, any pattern that can be characteristically modeled using the proposed approach is potentially well detectable.


翻译:检测项目管理反模式(AP)的存在,目前需要这方面的专家,这是一项昂贵的工作。更糟糕的是,专家可能会引入他们个人的主观性或偏向性。我们首先采用一种新颖的方法,将描述转化为可探测的AP,由任意的计量和事件组成,如记录的时间或维护活动,这些活动来自源代码或问题跟踪数据,因此描述的目标成为基于数据的数据。第二,我们展示了一种新颖的方法来量化真实世界项目与基于数据的AP描述的偏差并分。使用9个显示某种程度的 Fire Drill 的真实世界项目,我们展示了如何进一步加强翻译的AP。这些项目的地面真相来自两名专家,并且他们之间也取得了共识。我们的评估范围有四种模式,其中第一个纯粹来自描述,第二个类型由数据增强,而第三个类型仅来自数据。第四类是衍生的元程序模式。然后是衍生出来的Fireal Drill AP,从描述中翻译出的一种模式, 仅用于几乎源代码共享的代码共享,或者问题跟踪项目中发现了一种潜在的真实性。我们从源代码检测中可以很好地探测到精确的路径项目。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员