Coverage-guided fuzzing's aggressive, high-volume testing has helped reveal tens of thousands of software security flaws. While executing billions of test cases mandates fast code coverage tracing, the nature of binary-only targets leads to reduced tracing performance. A recent advancement in binary fuzzing performance is Coverage-guided Tracing (CGT), which brings orders-of-magnitude gains in throughput by restricting the expense of coverage tracing to only when new coverage is guaranteed. Unfortunately, CGT suits only a basic block coverage granularity -- yet most fuzzers require finer-grain coverage metrics: edge coverage and hit counts. It is this limitation which prohibits nearly all of today's state-of-the-art fuzzers from attaining the performance benefits of CGT. This paper tackles the challenges of adapting CGT to fuzzing's most ubiquitous coverage metrics. We introduce and implement a suite of enhancements that expand CGT's introspection to fuzzing's most common code coverage metrics, while maintaining its orders-of-magnitude speedup over conventional always-on coverage tracing. We evaluate their trade-offs with respect to fuzzing performance and effectiveness across 12 diverse real-world binaries (8 open- and 4 closed-source). On average, our coverage-preserving CGT attains near-identical speed to the present block-coverage-only CGT, UnTracer; and outperforms leading binary- and source-level coverage tracers QEMU, Dyninst, RetroWrite, and AFL-Clang by 2-24x, finding more bugs in less time.


翻译:覆盖引导的模糊性测试有助于揭示数以万计的软件安全缺陷。 执行数十亿个测试案例要求快速代码覆盖跟踪, 而二进制目标的性质导致跟踪性能下降。 二进制模糊性表现的最新进展是覆盖引导追踪(CGT ), 将覆盖跟踪的成本限制在新覆盖得到保障时才带来吞吐量的增加。 不幸的是, CGT 只适合基本的块覆盖颗粒度 -- 但大多数 Fuzzer 需要精确的覆盖度: 边缘覆盖和点数。 正是这一限制使得今天所有最先进的模糊性指标都无法达到 CGT 的业绩效益。 本文应对了使 CGT 适应模糊性最易可见的覆盖度指标的挑战。 我们引入并实施了一套强化措施, 将CGT的内分流扩大至最常见的代码覆盖度, 同时保持其超常和超强的精确度速度。 QQ- 和最接近常规的覆盖度 Q- 和最接近的路径 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
12+阅读 · 2022年4月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员