The study introduces an automated trading system for S\&P500 E-mini futures (ES) based on state-of-the-art machine learning. Concretely: we extract a set of scenarios from the tick market data to train the models and further use the predictions to statistically assess the soundness of the approach. We define the scenarios from the local extrema of the price action. Price extrema is a commonly traded pattern, however, to the best of our knowledge, there is no study presenting a pipeline for automated classification and profitability evaluation. Additionally, we evaluate the approach in the simulated trading environment on the historical data. Our study is filling this gap by presenting a broad evaluation of the approach supported by statistical tools which make it generalisable to unseen data and comparable to other approaches.
翻译:这项研究引入了S ⁇ P500 E-mini 期货自动化交易系统,该系统基于最先进的机器学习。具体地说,我们从微博市场数据中提取了一套设想方案,以培训模型,并进一步利用预测来从统计角度评估方法的健全性。我们从价格行动的当地极限中界定了设想方案。价格极限是一种经常交易的模式,然而,据我们所知,没有一项研究为自动分类和盈利性评价提供管道。此外,我们评估模拟贸易环境对历史数据所采用的方法。我们的研究正在填补这一空白,对统计工具所支持的方法进行广泛的评价,这些统计工具使不可见的数据具有普遍性,并与其他方法具有可比性。