Echo State Networks (ESNs) are a type of single-layer recurrent neural network with randomly-chosen internal weights and a trainable output layer. We prove under mild conditions that a sufficiently large Echo State Network (ESN) can approximate the value function of a broad class of stochastic and deterministic control problems. Such control problems are generally non-Markovian. We describe how the ESN can form the basis for novel (and computationally efficient) reinforcement learning algorithms in a non-Markovian framework. We demonstrate this theory with two examples. In the first, we use an ESN to solve a deterministic, partially observed, control problem which is a simple game we call `Bee World'. In the second example, we consider a stochastic control problem inspired by a market making problem in mathematical finance. In both cases we can compare the dynamics of the algorithms with analytic solutions to show that even after only a single reinforcement policy iteration the algorithms perform with reasonable skill.


翻译:Echo State Network (ESNs) 是一种单层经常性神经网络, 随机地选择内部重量和可训练的产出层。 我们证明, 在温和的条件下, 一个足够大的回声状态网络(ESN) 能够接近一大批随机性和确定性控制问题的价值功能。 这种控制问题一般都是非马尔科维安的。 我们描述 ESN 如何在非马尔科维安框架内形成新的(和计算效率的)强化学习算法的基础。 我们用两个例子来展示这一理论。 首先, 我们用 ESN 来解决一个确定性、 部分观察到的控制问题, 我们称之为“ Bee World ” 。 在第二个例子中, 我们考虑一个由数学融资中引起问题的市场引发的随机控制问题。 在这两个例子中, 我们可以将算法的动态与分析解决方案相比较, 以显示即使在单项加固政策之后, 算法仍然以合理的技能运作。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员