This paper develops the first closed-form optimal portfolio allocation formula for a spot asset whose variance follows a GARCH(1,1) process. We consider an investor with constant relative risk aversion (CRRA) utility who wants to maximize the expected utility from terminal wealth under a Heston and Nandi (2000) GARCH (HN-GARCH) model. We obtain closed formulas for the optimal investment strategy, the value function and the optimal terminal wealth. We find the optimal strategy is independent of the development of the risky asset, and the solution converges to that of a continuous-time Heston stochastic volatility model, albeit under additional conditions. For a daily trading scenario, the optimal solutions are quite robust to variations in the parameters, while the numerical wealth equivalent loss (WEL) analysis shows good performance of the Heston solution, with a quite inferior performance of the Merton solution.
翻译:本文为根据GARCH(1,1)程序出现差异的现成资产开发了第一个封闭式最佳投资组合分配公式。 我们认为,投资者具有持续的相对风险规避(CRRA)功能,希望在赫斯顿和南迪(2000年)GARCH(HN-GARCH)模式下最大限度地利用终端财富的预期效用。我们获得了最佳投资战略、价值功能和最佳终端财富的封闭式公式。我们发现,最佳战略独立于风险资产的开发,解决方案与持续时间赫斯顿随机波动模型相融合,尽管在附加条件下也是如此。对于日常交易情景而言,最佳解决方案非常健全,可以适应参数的变化,而等值财富损失(WEL)分析显示赫斯顿解决方案的业绩良好,默顿解决方案的绩效非常差。