Previous works on age of information and erasure channels have dealt with specific models and computed the average age or average peak age for certain settings. In this paper, given a source that produces a letter every $T_s$ seconds and an erasure channel that can be used every $T_c$ seconds, we ask what is the coding strategy that minimizes the time-average age of information that an observer of the channel output incurs. We first analyze the case where the source alphabet and the channel-input alphabet have the same size. We show that a trivial coding strategy is optimal and a closed form expression for the age can be derived. We then analyze the case where the alphabets have different sizes. We use a random coding argument to bound the average age and show that the average age achieved using random codes converges to the optimal average age of linear block codes as the source alphabet becomes large.
翻译:先前关于信息年龄和删除频道的工作涉及特定模型, 并计算了某些设置的平均年龄或平均峰值。 在本文中, 给一个源, 生成每$_ s 秒的字母, 并提供一个每$_ c 秒可以使用的删除频道, 我们询问什么是最大限度地减少频道输出观察者所生成信息的时间平均年龄的编码战略。 我们首先分析源字母和频道输入字母大小相同的案例。 我们显示一个微不足道的编码策略是最佳的, 并且可以导出年龄的封闭形式表达式。 我们然后分析字母大小不同的案例。 我们使用随机编码参数来约束平均年龄, 并显示随着源字母变大, 随机编码实现的平均年龄会与线性区代码的最佳平均年龄一致 。