In this paper, we study the problem of estimating the autocovariance sequence resulting from a reversible Markov chain. A motivating application for studying this problem is the estimation of the asymptotic variance in central limit theorems for Markov chains. The asymptotic variance quantifies uncertainties in averages of the form $M^{-1}\sum_{t=0}^{M-1}g(X_t)$, where $X_0,X_1,...$ are iterates from a Markov chain. It is well known that the autocovariances from reversible Markov chains can be represented as the moments of a unique positive measure supported on $[-1,1]$. We propose a novel shape-constrained estimator of the autocovariance sequence. Our approach is based on the key observation that the representability of the autocovariance sequence as a moment sequence imposes certain shape constraints, which we can exploit in the estimation procedure. We examine the theoretical properties of the proposed estimator and provide strong consistency guarantees for our estimator. In particular, for reversible Markov chains satisfying a geometric drift condition, we show that our estimator is strongly consistent for the true autocovariance sequence with respect to an $\ell_2$ distance, and that our estimator leads to strongly consistent estimates of the asymptotic variance. Finally, we perform empirical studies to illustrate the theoretical properties of the proposed estimator as well as to demonstrate the effectiveness of our estimator in comparison with other current state-of-the-art methods for Markov chain Monte Carlo variance estimation, including batch means, spectral variance estimators, and the initial convex sequence estimator.
翻译:在本文中, 我们研究如何估算由可逆的 Markov 链链导致的自动变异序列。 研究这一问题的一个激励应用程序是估计Markov 链的中央限制理论值中的无症状差异。 无症状差异量化了以美元为单位的 $M ⁇ -1 ⁇ sum ⁇ t=0 ⁇ M-1}g( X_t) 平均值中的不确定性, 美元是来自马尔科夫 链条的转折。 众所周知, 可逆的 Markov 链的自动变异可以作为以 $[1, 1$] 支持的独特积极度计量的比较时刻。 我们提出一个全新的、 不受形状限制的自动变异度估计值。 我们的方法基于这样的关键观察, 即自动变异性序列的可代表性, 我们可以在估算程序中使用某些形状限制。 我们研究拟议的估算器的理论性能, 并为我们估算器的估算器提供强有力的一致性保证。 特别是, 以可逆的当前变性变性变性变度序列来测量我们的测算结果, 以持续性变数, 我们的测算工具显示我们测算方向的 。