Boosting is an ensemble learning method that converts a weak learner into a strong learner in the PAC learning framework. Freund and Schapire gave the first classical boosting algorithm for binary hypothesis known as AdaBoost, and this was recently adapted into a quantum boosting algorithm by Arunachalam et al. Their quantum boosting algorithm (which we refer to as Q-AdaBoost) is quadratically faster than the classical version in terms of the VC-dimension of the hypothesis class of the weak learner but polynomially worse in the bias of the weak learner. In this work we design a different quantum boosting algorithm that uses domain partitioning hypotheses that are significantly more flexible than those used in prior quantum boosting algorithms in terms of margin calculations. Our algorithm Q-RealBoost is inspired by the "Real AdaBoost" (aka. RealBoost) extension to the original AdaBoost algorithm. Further, we show that Q-RealBoost provides a polynomial speedup over Q-AdaBoost in terms of both the bias of the weak learner and the time taken by the weak learner to learn the target concept class.
翻译:推动是一种混合式学习方法, 将弱学习者转换成PAC学习框架中的强学习者。 Freund 和 Shapire 提供了第一个称为 AdaBoost 的二进制假设古典助推算法, 最近这一算法被Arunachalam 等人改编为量子助推算法。 他们的量子助算法( 我们称之为Q- AdaBoost ) 比经典版本的 " Real AdaBoost " ( aka. RealBoost) 扩展为原AdaBoost 演算法。 此外, 我们显示, Q- RealBoost 提供了一种不同的量子增强算法, 使用域分配的假设比先前量子促进算法中所使用的更灵活得多。 我们的量子增算法( 我们称之为Q- RealBoost) 受 " Real AdaBoost " ( aka. reboost) 扩展为原始的AdaBoost 演算法。 此外, 我们显示, Q- RealBoost 提供了Q- Real- Boostt 提供了一种在Q- legnial sle lastele le le lest lest lest lest lest leglest lest lestal lest legleglest lest legal legal legal legal le led led ledal lest ledal ledal le ledal leftal le leftal laftal leftal leftal leftal legment leftal leftal legment leal legmenttal fial leal leal fial fial fial le le le le le le leal legal leal latical fical le le leal le 概念中, latial le le le le le latial le latial leal leal latial le le le 的软化的微的微的