The energy transition introduces more volatile energy sources into the power grids. In this context, power transfer between different synchronous areas through High Voltage Direct Current (HVDC) links becomes increasingly important. Such links can balance volatile generation by enabling long-distance transport or by leveraging their fast control behavior. Here, we investigate the interaction of power imbalances - represented through the power grid frequency - and power flows on HVDC links between synchronous areas in Europe. We use explainable machine learning to identify key dependencies and disentangle the interaction of critical features. Our results show that market-based HVDC flows introduce deterministic frequency deviations, which however can be mitigated through strict ramping limits. Moreover, varying HVDC operation modes strongly affect the interaction with the grid. In particular, we show that load-frequency control via HVDC links can both have control-like or disturbance-like impacts on frequency stability.
翻译:能源转型将更不稳定的能源引入电网。 在这方面,通过高压直接电流(HVDC)连接的不同同步地区之间的电源转移变得日益重要。 这种联系可以通过长距离运输或利用其快速控制行为来平衡波动性发电。 在这里,我们调查电网频率代表的电力不平衡与欧洲同步地区之间HVDC连接上的电力流动的相互作用。 我们使用可解释的机器学习来识别关键依赖性并分解关键特征的相互作用。 我们的结果表明,基于市场的HVDC流动引入了确定性频率的偏差,但可以通过严格的斜坡限制来缓解。 此外,不同的HVDC操作模式会严重影响与电网的相互作用。 特别是,我们表明,通过HVDC连接的载荷频率控制对频率稳定既有控制效果,也有干扰作用。