This study develops an unsupervised learning algorithm for products of expert capsules with dynamic routing. Analogous to binary-valued neurons in Restricted Boltzmann Machines, the magnitude of a squashed capsule firing takes values between zero and one, representing the probability of the capsule being on. This analogy motivates the design of an energy function for capsule networks. In order to have an efficient sampling procedure where hidden layer nodes are not connected, the energy function is made consistent with dynamic routing in the sense of the probability of a capsule firing, and inference on the capsule network is computed with the dynamic routing between capsules procedure. In order to optimize the log-likelihood of the visible layer capsules, the gradient is found in terms of this energy function. The developed unsupervised learning algorithm is used to train a capsule network on standard vision datasets, and is able to generate realistic looking images from its learned distribution.
翻译:本研究为具有动态路由的专家胶囊的产品开发了一种不受监督的学习算法。 在受限制的波尔茨曼机器中, 与双值神经元进行模拟, 压缩胶囊发射的大小在零到1之间, 代表胶囊的概率。 这个比喻激励了胶囊网络的能源功能设计。 为了在隐蔽的层节点没有连接的情况下有一个高效的取样程序, 能量功能与动态路由相一致, 从胶囊发射的概率的意义上讲, 胶囊网络上的推论是用胶囊之间的动态路由程序来计算。 为了优化可见层胶囊的日志相似性, 渐变值是在这个能量函数中找到的。 开发的未经监督的学习算法用于在标准视觉数据集上训练胶囊网络, 并且能够从所学的分布中产生符合现实的外观图像 。