In this paper, we present a novel model-agnostic machine learning technique to extract a reduced thermochemical model for reacting hypersonic flows simulation. A first simulation gathers all relevant thermodynamic states and the corresponding gas properties via a given model. The states are embedded in a low-dimensional space and clustered to identify regions with different levels of thermochemical (non)-equilibrium. Then, a surrogate surface from the reduced cluster-space to the output space is generated using radial-basis-function networks. The method is validated and benchmarked on a simulation of a hypersonic flat-plate boundary layer with finite-rate chemistry. The gas properties of the reactive air mixture are initially modeled using the open-source Mutation++ library. Substituting Mutation++ with the light-weight, machine-learned alternative improves the performance of the solver by 50% while maintaining overall accuracy.
翻译:在本文中,我们展示了一种新型模型 -- -- 不可知机器学习技术,以提取一个减少的热化学模型,用于反应超声波流模拟。第一次模拟通过一个特定模型收集所有相关热动力状态和相应的气体特性。这些状态嵌入一个低维空间,并聚集在一起以识别温度化学(non)-equilibrium不同水平的区域。然后,从减少的集束空间到输出空间的替代表面使用放射性基质功用网络生成。该方法经过验证,并以一个具有定速化学的超声波板板边界层的模拟作为基准。反应性空气混合物的气体特性最初使用开放源 Mudication+ 图书馆作为模型。以轻量、机械学的替代方法将溶解器的性能提高50%,同时保持总体精确性。