Quantum Annealing is a heuristic for solving optimization problems that have seen a recent surge in usage owing to the success of D-Wave Systems. This paper aims to find a good heuristic for solving the Electric Vehicle Charger Placement (EVCP) problem, a problem that stands to be very important given the costs of setting up an electric vehicle (EV) charger and the expected surge in electric vehicles across the world. The same problem statement can also be generalized to the optimal placement of any entity in a grid and can be explored for further uses. Finally, the authors introduce a novel heuristic combining Quantum Annealing and Genetic Algorithms to solve the problem. The proposed hybrid approach entails seeding the genetic algorithms with the results of quantum annealing. Experimental results show that this method decreases the minimum distance from Points of Interest (POI) by $42.89\%$ compared to vanilla quantum annealing over the sample EVCP datasets.
翻译:Qantum Annaaling是解决优化问题的一种杂务,由于D-Wave Systems的成功,最近使用量激增。本文旨在找到解决电动车辆充电装置问题的良好杂务。鉴于在世界各地安装电动车辆充电器的费用和预计电动车辆的激增,这个问题非常重要。同样的问题说明也可以推广到任何实体在电网中的最佳位置,并可以探索进一步使用。最后,作者提出了一个新的超常结合 Quantum Annaaling 和遗传Algorithms 来解决这个问题。拟议的混合方法需要将基因算法与量子喷射结果进行检测。实验结果显示,这种方法将最小距离利益点(POI)的距离减少42.89 $,而比样本EVCP数据集的香气量减少42.89 $。