The Jeffreys divergence is a renown symmetrization of the oriented Kullback-Leibler divergence broadly used in information sciences. Since the Jeffreys divergence between Gaussian mixture models is not available in closed-form, various techniques with pros and cons have been proposed in the literature to either estimate, approximate, or lower and upper bound this divergence. In this paper, we propose a simple yet fast heuristic to approximate the Jeffreys divergence between two univariate Gaussian mixtures with arbitrary number of components. Our heuristic relies on converting the mixtures into pairs of dually parameterized probability densities belonging to an exponential family. In particular, we consider the versatile polynomial exponential family densities, and design a divergence to measure in closed-form the goodness of fit between a Gaussian mixture and its polynomial exponential density approximation. This goodness-of-fit divergence is a generalization of the Hyv\"arinen divergence used to estimate models with computationally intractable normalizers. It allows us to perform model selection by choosing the orders of the polynomial exponential densities used to approximate the mixtures. We demonstrate experimentally that our heuristic to approximate the Jeffreys divergence improves by several orders of magnitude the computational time of stochastic Monte Carlo estimations while approximating reasonably well the Jeffreys divergence, specially when the mixtures have a very small number of modes. Besides, our mixture-to-exponential family conversion techniques may prove useful in other settings.


翻译:Jeffrey的偏差是信息科学中广泛使用的有方向的 Kullback- Leiber 混合模型的反差。 由于Gaussian 混合模型之间不存在封闭式差异, 文献中提出了各种有利弊和弊端的技术, 以估计、 近似、 或下限和上限这种差异。 在本文中, 我们提出简单而快速的偏差, 以近似于Jeffrey 两种含有任意数量成分的独一Gullback- Leper混合物之间的差异。 我们的超常依赖将混合物转换成属于指数式组合的双倍参数化概率变异的组合。 特别是, 我们考虑到多种多功能的多功能指数家庭密度, 并设计一种偏差, 以测量高糖混合物与其多元指数性密度密度近似。 这种优异性差是用于计算性易变异性模型的缩略性。 它让我们通过选择多参数变异性混合变异性变异性组合的组合的组合组合来进行模型选择。 我们的多功能变异性变异性变化的模型, 用来测量了多种货币变异性变异性变化的模型, 我们的精确性变异性变近性变化的精确性变化的精确性变近性变化的模型, 以近性变近性变化的变化方法的变化的变化的变化的变化的变化方法可以用来用来用来用来用来用来证明。

0
下载
关闭预览

相关内容

最新《时序数据分析》书稿,512页pdf
专知会员服务
112+阅读 · 2020年12月25日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员