According to recent studies, commonly used computer vision datasets contain about 4% of label errors. For example, the COCO dataset is known for its high level of noise in data labels, which limits its use for training robust neural deep architectures in a real-world scenario. To model such a noise, in this paper we have proposed the homoscedastic aleatoric uncertainty estimation, and present a series of novel loss functions to address the problem of image object detection at scale. Specifically, the proposed functions are based on Bayesian inference and we have incorporated them into the common community-adopted object detection deep learning architecture RetinaNet. We have also shown that modeling of homoscedastic aleatoric uncertainty using our novel functions allows to increase the model interpretability and to improve the object detection performance being evaluated on the COCO dataset.


翻译:根据最近的研究,通常使用的计算机视觉数据集包含大约4%的标签错误。例如,COCO数据集以数据标签中的高噪音而著称,这限制了它用于在现实世界情景中培训坚固的神经深层结构。为了模拟这种噪音,我们在本文中建议采用同质感偏执性不确定性估计,并提出一系列新的损失功能,以解决大规模图像物体探测问题。具体地说,拟议的功能以Bayesian推理为基础,我们将这些功能纳入了共同社区采用的物体探测深层学习结构RetinaNet。我们还表明,利用我们的新功能模拟同质性神经深层不确定性,可以提高模型的可解释性,并改进在COCO数据集上评估的物体探测性能。

0
下载
关闭预览

相关内容

RetinaNet是2018年Facebook AI团队在目标检测领域新的贡献。它的重要作者名单中Ross Girshick与Kaiming He赫然在列。来自Microsoft的Sun Jian团队与现在Facebook的Ross/Kaiming团队在当前视觉目标分类、检测领域有着北乔峰、南慕容一般的独特地位。这两个实验室的文章多是行业里前进方向的提示牌。 RetinaNet只是原来FPN网络与FCN网络的组合应用,因此在目标网络检测框架上它并无特别亮眼创新。文章中最大的创新来自于Focal loss的提出及在单阶段目标检测网络RetinaNet(实质为Resnet + FPN + FCN)的成功应用。Focal loss是一种改进了的交叉熵(cross-entropy, CE)loss,它通过在原有的CE loss上乘了个使易检测目标对模型训练贡献削弱的指数式,从而使得Focal loss成功地解决了在目标检测时,正负样本区域极不平衡而目标检测loss易被大批量负样本所左右的问题。此问题是单阶段目标检测框架(如SSD/Yolo系列)与双阶段目标检测框架(如Faster-RCNN/R-FCN等)accuracy gap的最大原因。在Focal loss提出之前,已有的目标检测网络都是通过像Boot strapping/Hard example mining等方法来解决此问题的。作者通过后续实验成功表明Focal loss可在单阶段目标检测网络中成功使用,并最终能以更快的速率实现与双阶段目标检测网络近似或更优的效果。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2018年12月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2018年12月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员