Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale. Here we demonstrate a scalable improvement to TTI that uses data assimilation (DA) on a contact network to learn about individual risks of infection. Network DA exploits diverse sources of health data together with proximity data from mobile devices. In simulations of the early COVID-19 epidemic in New York City, network DA identifies up to a factor 2 more infections than contact tracing when harnessing the same diagnostic test data. Targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI, provided compliance reaches around 75%. Network DA can be implemented by expanding the backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control the ongoing or future epidemics while minimizing economic disruption.
翻译:检测、接触追踪和隔离(TTI)是一种难以大规模实施的流行病管理和控制方法。在这里,我们展示了对TTI的一种可推广的改进,TTI在接触网络上使用数据同化(DA)了解个人感染风险。网络DA利用各种健康数据来源以及移动装置的近距离数据。在对纽约市早期COVID-19流行病的模拟中,网络DA在使用同样的诊断测试数据时发现感染人数比接触追踪人数多2倍。与网络DA联系的干预措施将死亡人数比TTI减少最多4倍,只要遵守率达到75%左右。网络DA可以通过扩大现有接触通知应用程序的后端来实施,从而大大增强它们的能力。在规模上实施,它有可能准确和有效地控制当前或未来的流行病,同时尽量减少经济混乱。