ChatGPT has become a global sensation. As ChatGPT and other Large Language Models (LLMs) emerge, concerns of misusing them in various ways increase, such as disseminating fake news, plagiarism, manipulating public opinion, cheating, and fraud. Hence, distinguishing AI-generated from human-generated becomes increasingly essential. Researchers have proposed various detection methodologies, ranging from basic binary classifiers to more complex deep-learning models. Some detection techniques rely on statistical characteristics or syntactic patterns, while others incorporate semantic or contextual information to improve accuracy. The primary objective of this study is to provide a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection. Additionally, we evaluated other AI-generated text detection tools that do not specifically claim to detect ChatGPT-generated content to assess their performance in detecting ChatGPT-generated content. For our evaluation, we have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains and user-generated responses from popular social networking platforms. The dataset serves as a reference to assess the performance of various techniques in detecting ChatGPT-generated content. Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.


翻译:聊GPT已经成为全球轰动的现象。随着ChatGPT和其他大型语言模型(LLMs)的出现,人们越来越担心在各种方式的误用,如散布假新闻、抄袭、操纵公众意见、舞弊和欺诈。因此,区分AI生成的文本和人类生成的文本变得越来越重要。研究人员提议了各种检测方法,从基本的二进制分类器到更复杂的深度学习模型。一些检测技术依赖于统计特征或句法模式,而其他技术则包含语义或上下文信息以提高准确性。本研究的主要目标是综合评估最近的聊GPT检测技术。此外,我们还评估了其他不特别声称检测聊GPT生成内容的AI生成文本检测工具,以评估其在检测聊GPT生成内容方面的性能。为了评估我们的方法,我们准备了基准数据集,包括来自医学、开放问答和金融领域的各种问题以及来自流行社交网络平台的用户生成的响应。该数据集可以用作评估各种技术在检测聊GPT生成内容方面的性能的参考。我们的评估结果表明,目前不存在有效检测聊GPT生成内容的方法。

2
下载
关闭预览

相关内容

【2022新书】Python数据科学导论,309页pdf
专知会员服务
81+阅读 · 2022年8月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
157+阅读 · 2023年4月20日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员