Standard approaches to group-based notions of fairness, such as \emph{parity} and \emph{equalized odds}, try to equalize absolute measures of performance across known groups (based on race, gender, etc.). Consequently, a group that is inherently harder to classify may hold back the performance on other groups; and no guarantees can be provided for unforeseen groups. Instead, we propose a fairness notion whose guarantee, on each group $g$ in a class $\mathcal{G}$, is relative to the performance of the best classifier on $g$. We apply this notion to broad classes of groups, in particular, where (a) $\mathcal{G}$ consists of all possible groups (subsets) in the data, and (b) $\mathcal{G}$ is more streamlined. For the first setting, which is akin to groups being completely unknown, we devise the {\sc PF} (Proportional Fairness) classifier, which guarantees, on any possible group $g$, an accuracy that is proportional to that of the optimal classifier for $g$, scaled by the relative size of $g$ in the data set. Due to including all possible groups, some of which could be too complex to be relevant, the worst-case theoretical guarantees here have to be proportionally weaker for smaller subsets. For the second setting, we devise the {\sc BeFair} (Best-effort Fair) framework which seeks an accuracy, on every $g \in \mathcal{G}$, which approximates that of the optimal classifier on $g$, independent of the size of $g$. Aiming for such a guarantee results in a non-convex problem, and we design novel techniques to get around this difficulty when $\mathcal{G}$ is the set of linear hypotheses. We test our algorithms on real-world data sets, and present interesting comparative insights on their performance.
翻译:对于基于集团的公平概念,例如 \ emph{ parity} { 和\ emph{ 公平差数} 的标准方法, 我们试图使已知群体( 基于种族、 性别等) 的绝对绩效度量相等。 因此, 一个本性较难分类的集团可能会阻碍其他群体的业绩; 并且无法为未预见群体提供保障。 相反, 我们提出了一个公平概念, 每一组$( $\ mathcal{ G} 美元) 的保障与美元的最佳分类员的绩效相对比。 我们把这个概念的概念应用到美元, 特别是 (a) $\ mathcal{ G} 的绝对度量量度量度, 数据中所有可能的数值比值 。 当我们最坏的分类员( 美元) 的精确度与美元最坏的值框架相对比值。