Clinical evidence has shown that rib-suppressed chest X-rays (CXRs) can improve the reliability of pulmonary disease diagnosis. However, previous approaches on generating rib-suppressed CXR face challenges in preserving details and eliminating rib residues. We hereby propose a GAN-based disentanglement learning framework called Rib Suppression GAN, or RSGAN, to perform rib suppression by utilizing the anatomical knowledge embedded in unpaired computed tomography (CT) images. In this approach, we employ a residual map to characterize the intensity difference between CXR and the corresponding rib-suppressed result. To predict the residual map in CXR domain, we disentangle the image into structure- and contrast-specific features and transfer the rib structural priors from digitally reconstructed radiographs (DRRs) computed by CT. Furthermore, we employ additional adaptive loss to suppress rib residue and preserve more details. We conduct extensive experiments based on 1,673 CT volumes, and four benchmarking CXR datasets, totaling over 120K images, to demonstrate that (i) our proposed RSGAN achieves superior image quality compared to the state-of-the-art rib suppression methods; (ii) combining CXR with our rib-suppressed result leads to better performance in lung disease classification and tuberculosis area detection.
翻译:临床证据表明,肋骨压抑胸X光(CXRs)可以提高肺部疾病诊断的可靠性;然而,以前关于生成肋压抑骨CXR的方法在保存细节和消除肋骨残留物方面面临着挑战;我们在此提议一个基于GAN的分解学习框架,称为Rib 抑制GAN,或RSGAN, 以利用未计算成的断层成像(CT)图像中所含的解剖知识来进行肋骨抑制;在这种方法中,我们使用一个剩余地图来说明CXR和相应的肋骨抑制结果之间的强度差异;要预测CXR域的残留图,我们将图像分解成结构和对比特定特征,并将前端的肋骨结构学框架从数字重建的射电图(DRRRRs)中转移,用额外的适应性损失来抑制肋骨残留物并保存更多的细节;我们根据1 673 CT 卷进行广泛的实验,并用4个基准的CXR数据设置,将120K质量图像与R-S-R图像合并,以显示(S-R-R-R-R-R-R-R-R-real)中的拟议升级图像实现更好的业绩。