Telegram is one of the most popular instant messaging apps in today's digital age. In addition to providing a private messaging service, Telegram, with its channels, represents a valid medium for rapidly broadcasting content to a large audience (COVID-19 announcements), but, unfortunately, also for disseminating radical ideologies and coordinating attacks (Capitol Hill riot). This paper presents the TGDataset, a new dataset that includes 120,979 Telegram channels and over 400 million messages, making it the largest collection of Telegram channels to the best of our knowledge. After a brief introduction to the data collection process, we analyze the languages spoken within our dataset and the topic covered by English channels. Finally, we discuss some use cases in which our dataset can be extremely useful to understand better the Telegram ecosystem, as well as to study the diffusion of questionable news. In addition to the raw dataset, we released the scripts we used to analyze the dataset and the list of channels belonging to the network of a new conspiracy theory called Sabmyk.


翻译:电讯是当今数字时代最受欢迎的即时电文应用之一。 电讯是当今数字时代最受欢迎的即时电文应用软件之一。 除了提供私人电讯服务外, Telegram(其频道)是向广大观众快速广播内容的有效媒介( COVID-19 公告),但不幸的是,它也是传播激进意识形态和协调攻击( Capitol Hill 暴动)的有效媒介。 本文展示了TGDataset( TGDataset), 包括120, 979 Telegram 频道和超过4亿条信息的新数据集, 使得它成为我们所知最多的Teleggram 频道收藏。 在对数据收集过程进行简要介绍后, 我们分析了我们数据集中所使用的语言以及英语频道所涵盖的主题。 最后, 我们讨论了一些使用我们数据集可以非常有用的案例, 来更好地了解Telegram生态系统, 以及研究可疑消息的传播。 除了原始数据集外, 我们还发布了我们用来分析数据集的剧本以及属于名为Sabmyk的新阴谋论网络的频道清单。</s>

0
下载
关闭预览

相关内容

Telegram Messenger是一个跨平台的实时通信软件,它的客户端是自由及开放源代码软件,但是它的服务器是专有软件。用户可以相互交换加密与自析构的消息,以及照片、视频、文件,支持所有的文件类型。( 维基百科
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员